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Transient Hot Strip (THS) Method: Uncertainty
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The transient hot strip (THS) method can be used to measure simultaneously
the thermal conductivity A and diffusivity a of dielectrics within a few minutes.
However, although the method has been known for 20 years, there is no com-
plete assessment of its uncertainty. First, the underlying complex mathematical
model makes any error analysis a tedious and complicated task. Secondly, the
ISO Guide to the Expression of Uncertainty in Measurement does not apply
directly because of the classical model’s implicit character. In the present paper,
the combined standard uncertainty u of the THS method has been determined
by applying two different models. First, we start from the classical nonlinear
model. The major sources of errors are analyzed, namely, the ideal model errors,
the evaluation errors, and the measurement errors. Next, a newly developed
numerical procedure combines all the components in a way that the resultant
standard uncertainties of the nonlinear model, u(1)/A=2.6% and u(a)/a=11%,
comply as closely as possible with the principles of the ISO Guide. Second, we
start from the recently presented linear expression of the THS mathematical
model that is briefly discussed. Since this approximation is explicit in both
measurands, the uncertainties, u(1)/A=2.5% and u(a)/a =11 %, are determined
in full accordance with the ISO guide. The uncertainty in thermal conductivity
is experimentally assessed against the standard reference CRM 039 (Pyrex). The
results obtained are in excellent agreement with the theoretical values.

KEY WORDS: linear working equation; nonlinear working equation;
standard uncertainty; thermal conductivity; thermal diffusivity; transient hot
strip method.

1. INTRODUCTION

In a transient hot strip (THS) setup a thin metal strip serves as the active
sensor to measure the thermal conductivity 4 and thermal diffusivity a of
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a dielectric. Clamped between the brick-shaped sample halves, the resistive
heated strip’s temperature rise in time, A7(¢), can easily be monitored as
its voltage drop AU(7(¢)). This THS signal provides a measure of 1 and «
within a few minutes. So far, for both measurands there is no uncertainty
assessment according to the ISO Guide to the Expression of Uncertainty in
Measurement [1]. In Ref. 1 an explicit mathematical model is presumed as
the basis for the analytical treatment.

The THS signal is governed by Gustafsson’s working equation [2].
Given in terms of the nondimensional time 7, it is nonlinear and implicit.
Thus, the measurands cannot be derived analytically; rather, they have to
be estimated (e.g., Ref. 3). Moreover, the working equation is practically
valid only piecewise within an undefined interval of time. This interval can
be located by trial and error only. Besides this severe “model error,” there
is an “evaluation error” arising from the nonlinear parameter estimation,
and, finally, any observed THS signal is itself subject to “measurement
errors.”

We analyze all three types of the above major errors in order to
estimate the uncertainty of what is referred to by us as the nonlinear THS
method. For this first of two assessments of this work we had to derive a
new nonlinear uncertainty estimator for implicit models since the mathe-
matical character of the related working equation does not allow a com-
plete analytical treatment as given by ISO. The procedure follows as closely
as possible the recommendations of the ISO Guide. It focuses not on an
analytical but on a numerical estimation of the variances of both the
measurands and is presented here for the first time. Within the framework
of the error analysis, we also quantify the sensitivity of A and a to errors
in the measurement inputs.

As mentioned above, the classical model leads to a complex signal
analysis that may yield unreliable results for the measurands. As recently
presented in Ref. 4, considerable improvement can be achieved by an
approximation of the fundamental working equation. Because of its
asymptotic behavior, this equation can be (quasi)linearized in terms of In ¢,
the natural logarithm of real time. As in the case of the closely related
transient hot wire (THW) method (e.g., Ref. 5), a THS signal no longer
inclines entirely nonlinearly if plotted against In z. There is a line segment,
expressed as AU(t)=mlInt+n, that not only yields explicitly both
measurands 4 = A(m) and a =a(m, n), but also provides additional informa-
tion on the model’s time domain validity in practice. Here, this procedure
is referred to as linear THS method.

The new linear evaluation technique is still based upon the classical
theoretical model and the fundamental experimental setup. Therefore, the
potential sources of model and measurement errors continue to exist.
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Nevertheless, the resulting standard uncertainty may vary from that of the
nonlinear method since linearization itself causes errors. Due to the linear
and explicit character of the new working equation, we were able to
estimate the uncertainty in full agreement with the ISO guide.

The results obtained here for both signal analysis methods are
experimentally assessed against the standard reference CRM 039 (Pyrex).

2. THEORY

The mathematical procedure in this work starts in Section 2.1 with a
brief overview of the classical physical model along with its nonlinear solu-
tion obtained by Gustafsson et al. [2]. The underlying ideal assumptions
imply two major model errors for practical purposes that are discussed
first. Then, the evaluation errors introduced by the nonlinear data analysis
are analyzed. In Section 2.2, first, the linearization of the working equation
is outlined briefly. The complete treatment is presented at some length in
Ref. 4. Second, the associated linearized model errors are analyzed. Finally,
we discuss the linear evaluation errors.

2.1. Ideal Model

A two-dimensional metal strip (x=0, —d<y< +d, —0<z< o) of
width D =2d is entirely surrounded by an unbounded homogeneous and
isotropic dielectric, initially at a temperature 7(x, y, z, t=0)=T,. When a
constant electric current / is passed through the strip, it simultaneously
serves as a continuous heat source of rate @ = Ul and as a resistance
thermometer of output voltage U(7(¢)). This transient THS signal U(7T(¢))
provides a measure of the dielectric’s thermal conductivity A and diffusivity a.
It is specified by the strip source solution of Gustafsson et al. [2]:

aU?1
= —Uy=—2—f(1)=kf 1
AU(T(1)) = U(T(1)) — U, 2ﬁLlf(T) f(7) (1)
where
fl(r)=rterf(zr7!) — v [l—exp(—r’z)]——1 Ei(—772) (2)
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and

/dat (4)

Here U, denotes the voltage drop at =0, and « the temperature coefficient
of the electrical resistance of the strip of length L >> D.

In practice, a THS signal U(z) is monitored pointwise as the time
series of N ordered pairs U(¢;) = U(t,), U(ty), U(t,), ..., U(ty). By evalua-
tion of the amplitude k(4) and shape f(t(a)) of this signal, the thermal con-
ductivity /4 and the thermal diffusivity @ of a finite sample can be derived,
in principle. However, the working equation [ Eq. (1)] suffers from three
essential drawbacks: first, it is nonlinear, and second, it is implicit. Also,
because of the mathematical nature, the measurands cannot be determined
analytically but have to be estimated numerically. In the course of this pro-
cess, evaluation errors, JUE, occur caused by the systematic and random
scatter of input data. Third, as can be shown experimentally, the ideal
mathematical model, Eq. (1), is not valid for either short, 0 <t <1t,;,, or
long, ¢ > t,..«, times, because of the real strip’s nonvanishing heat capacity
and the real sample’s exposed outer surfaces (cf. Section 2.1.1). As a first-
order approximation, Eq. (1) is practically valid only for such a time inter-
val during which the strip’s thermal influence can be confined to the sample
itself. Since this signal segment is not defined by theory, both its end points
can be located by trial and error only. Hence, another two errors, namely,
model and measurement errors, UM and 6U7, respectively, are intro-
duced. The most significant errors of each of the three classes mentioned
above are analyzed below. The overall deviation from an ideal THS signal,
U*, is given by

Ui=U}+0U;=UF +5UM+0UE+6U] (5)

Here the superscripts denote the following potential sources of error:
M, mathematical model; E, evaluation method; and J, measurement
method.

2.1.1. Ideal-Model Errors

The THS experimental setup, as depicted in Fig. 1, cannot be treated
analytically because it is subject to complex inner and outer boundary
conditions. Therefore, the problem is replaced by the simpler one of a
thermally closed system consisting of a perfect heat source embedded in a
perfect heat sink. These assumptions ensure that the electric power, P = Ul,
fed to the two-dimensional strip, is completely and instantly liberated to
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Fig. 1. Transient hot strip thermal part of setup. a, sample halves; b, hot-strip
of width D and length L; I, electric current: U(¢), THS voltage signal.

the infinite sample as heat at a rate of P =@&,. The complete heat is stored
here, as given by | @ dr=A4Q. The balance in the closed system is simply
expressed by

Pp=2, (6)

This major assumption finally leads to the mathematical model given
below.

The actual THS setup may not be treated as a thermally closed
system. The imperfections of both its components involve open inner and
outer boundaries that can be crossed by stray heat flows @;: the three-
dimensional strip acts not only as a source but also as an inner sink due
to its nonvanishing heat capacity. The finite sample responds not only as
a sink but also as an outer source because of its exposed surfaces. While
the strip stores heat that flows “inward,” namely, as &,,, the sample
releases heat “outward,” namely, heat at a net rate of @,, =(®% — @p).
Here @' indicates the virtual heat flow inside an infinite sample that would
flow instead of &%, in a finite sample. Moreover, there is a third significant
stray heat flow, @,,, that can leave the system through the heavy electrical
leads. All of these heat flows depend on their characteristic temperature
gradients and, hence, on time because of the transient nature of the experi-
ment, 7= T(¢). The balance of the open system is written

O (T, 1) =Dy — (D (T, 1)+ P (T, 1) + Py (T, 1) + -+ (7)
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As possible sources of error, the stray heat flows change the strip’s
temperature excursion and thus, the THS signal 4U(t). As pointed out
above, @,; becomes effective at short times and @,, at long times only:
when the experiment is started, the inner stray heat flow, @,,, instantly
increases enormously to heat up the strip, but within the next few seconds,
it decreases to minor values (cf. Section 2.1.1.1). The outer stray heat flow,
@,,, does not become significant before the heat flow @, has traveled the
sample completely and reaches its exposed surfaces. However, from that
moment, @,; increases or decreases monotonically depending on the outer
boundary conditions (cf. Sections 2.1.1.2). Thus, an “intermediate” time
interval may be considered as the practically valid domain of Eq.(1).
A substantial part of any nonlinear THS data analysis therefore concerns
as precise a definition of this interval as possible.

In contrast to @,, and ®,,, the heat flow &,, can be adjusted
experimentally by using leads of appropriate diameter. When this is done,
the temperature gradients at both ends of the strip can be minimized. Thus,
@, may be neglected. The deviations of the practical setup from the ideal
model introduce two significant model errors:

Here the superscripts denote the following sources of error: W, open inner
boundary; R, open outer boundary. There are other sources of model
errors such as temperature-dependent sample properties, the strip’s finite
thickness and length, its finite thermal conductivity, the interfacial thermal
resistance, etc. An analysis of these effects shows that they may be neglected
compared with the above-mentioned major errors (cf., e.g., Ref. 6).

2.1.1.1.  Inner Boundary ( Three-Dimensional Strip). A metal strip of
thickness v, volume ¥V = LDv, density pS, and specific heat capacity cIS) is
able to store heat at a rate of LDvp®c; dT°/dt. Supplied by a constant
electrical power P = @, there is therefore a stray heat flow @,; “into” the
strip. @, is stored and, thus, increases the strip’s mean temperature 7'S,
which is a measure of its enthalpy H. The model error U} introduced by
this phenomenon can be expressed in terms of the working equation

[Eq. (D],

w
(SUi(r)_
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where

dH drs
D(7)= T LDvp®c;, T

=v’)sf"5?ﬁ{erf<i>+;;exp<—;>—j;} (10)

For very short times, within the limit #— 0, Eq.(9) becomes
|®,,/®P,| — 1. Hence, at the moment the experiment is started, the input
power is consumed totally by the strip. However, 1 s later the ratio of heat
flows has decreased rapidly to typically |@,,/®,|~1% because of the
strip’s low heat capacity.

2.1.1.2. Outer Boundary (Finite Sample). In order to analyze the
potential error introduced by the outer boundary of a finite sample, two
cylindrical specimens of a homogeneous and isotropic dielectric (4, a) are
considered here. The first is unbounded. The second is of finite radius R,
and perfectly embedded in an outer metallic sample holder. Both are con-
sidered for a THS experiment.

In the case of the finite sample, the heat, liberated by the strip, travels
through the dielectric and, after some time, reaches the outer surface A.
Here it leaves the thermal system under test for the sample holder as the
stray heat flux @%,(R,, t)/4. For the infinite sample, in complete accord-
ance with the ideal model, the virtual cylinder surface 4 at radius R, is
crossed by the flux @%(R,, t)/4. Thus, the difference of both heat flows,
D, (1) = DY, (t) — Pp(1), integrated with respect to time, provides an
expression for the additional enthalpy stored by the sample. This enthalpy
causes a deviation of the temperature of the real sample from that of the
ideal one. Due to the transient nature of the experiment, @,,(#) depends
nonlinearly on time.

In general, the above-mentioned thermal condition on the outer sur-
face of a finite sample is neither adiabatic nor isothermal during a THS
experiment. This is the case of a nonlinear boundary condition of the
second kind:

OT| _ @h(Ro, 1)
M on Ro_ A

2 (11)

where 4, denotes the thermal conductivity of the sample holder and 07/0n
is the derivative along the outward drawn normal to the surface 4. Here
the heat flux @,,/4 is not prescribed; it is searched. While @%(R,, t)/4 can



224 Hammerschmidt and Sabuga

be calculated from the ideal model, @, (¢) can only be estimated. No solu-
tion for the practical case of a finite sample has so far been found.
Nevertheless, taking into account that the thermal conductivity of the
sample holder is much higher than that of the sample, i, >> 4, the outer
surface of the sample can be considered to be isothermal at the temperature
T=T,. Consequently, the difference from the temperature of the ideal
sample is given by 07 =T,— T(R,, t). Assuming that 67 does not depend
on position and applying the so-called thermometer equation U= Uy(1 +aT),
the following is obtained:

OUF(1) =alUs[ To—T(Ry, 1)] (12)

If the sample radius is large compared with the strip’s half-width,
Ry,>> D/2, Eq. (1) reduces to the known solution for a linear heat source
(cf, e.g., Ref.5). From this, the following governing equations result for
T(R07 t):

U,I —R?

R _ 0 . 0

oU! (t)—ocUO4n}“L E1< 4at> (13)
oUR SUR [0)) R?

U U, amr o\ dar

(14)

Empirically, it can be shown that the exponential integral — Ei( — R} /4at)
does not have an effect on the error SUR for arguments R} /4at <0.5. This
is the case for a maximum excess temperature of the surface 4 of about
0.1 K. From R} /4at ~ 0.5, the error begins to increase rapidly with time. An
experiment should, therefore, be terminated at .., < Rj/2a. This time is
in good agreement with the Gustafsson proviso [7]: as a condition to
terminate the experiment, Gustafsson empirically defines a probing depth
A= f\/at ., where 4= R,. The value of the coefficient f is somewhat
arbitrary between f=142 and f=3. t,,, denotes the maximum duration
of an experiment. However, the outer boundary error dU} cannot be
derived from this equation.

In general, the value of the thermal diffusivity « is not known and the
time ?,,, for an experiment to be terminated cannot, therefore, be
calculated. It must rather be estimated by trial and error.

2.1.2. Nonlinear Evaluation Errors

The nonlinear evaluation procedure to be applied for finding the
numerical values of the measurands A and a from any THS signal is
described in detail elsewhere [ 3]. The criterion used there is to estimate the

true values of the components of vector b= (U, k, a, ty) so as to minimize
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the sums of squares of deviations of the pointwise observed values
U;= U(t,) from these estimates U(t,, b)

72(0)=Y [U;— Uy —kf(2(2,))1* =Y. [U,— U(t,, b)]* > Min (15)

A reliable numerical solution to Eq.(15) is obtained by using the
Levenberg-Marquardt algorithm [3]. The regression model is given by the
working equation, Eq.(1); the input data pairs are taken only from the
valid time interval of a monitored signal. However, since these values are
subject to random and systematic errors, the sets U(¢;) and U, always
deviate. These errors can be analyzed in terms of the efficiency of the
estimation, the variance y 2(p). A measure of the precision of the fitted
parameters, b, is then given by the confidence interval b + u A(b) that has
to be related to the percentage confidence level 100 P [8]. This interval
defines the region which includes the true parameter values with the prob-
ability P. The confidence interval associated with each single parameter 5,
is calculated from the value of the standard deviation y and the related
element a%,, of the inverted Hessian [a*] = [a] "

- (16)
—J

Here F(P,j) is a function of probability P and the degree of free-
dom j. For a confidence level of 68.3%2 and j =4, F(0.683,4)=4.72 is
obtained. At this level, the relative errors in both measurands are given by

uA(X) 472)(

f Hv* (17)
uA(a) 472)( k

P PR (18)

In the case of a perfect data set, y =0 is valid and the error in both
measurands, therefore, vanishes. A perfect data set agrees unconditionally
with the mathematical model and is not affected by any measurement error.
For a data set that is affected by measurement errors, characterized by ran-
dom deviations of U, from the perfect data set, the ratio y/(N—4)=~y/N
remains constant. Thus, the errors in the measurands A and a can be

3 A 68.3% confidence interval is chosen for now. In Section 5, the evaluation error is added
to all the other errors discussed here and the sum is then multiplied by a coverage factor
of 2. This leads to a common confidence level of 95 %.
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analyzed for any given time interval [0, 7., ] in terms of the nondimen-
sional expressions \/og and k/a \/@ , respectively. For this purpose, first,
a constant and equally spaced sampling interval A¢=¢;,, —¢, for the data
acquisition is assumed. Two cases must then be considered, an infinite and
a finite sample: for the finite sample, the maximum duration of an experi-
ment has to be limited to ¢,,, = N A4t. Nevertheless, at any given value
of N, e.g., N=1000, 7., can be varied by choosing an appropriate value
for the strip width D [cf. Eq. (4)]. In the case of the infinite sample, the
duration is unlimited. Hence, any value for 7., can be prescribed for a
constant strip width by varying ... Since N oc 72, ., N=5007% is
assumed, for example.

The solutions obtained for both above-mentioned cases, are graphi-
cally represented in Fig. 2. The nondimensional errors \/@ and k/a \/@
appear in terms of the upper end point of the time interval [0, 7, ]. On
the basis of the curves, the following practical proviso can be made: if only
the thermal conductivity of a material is of interest, the strip should be as
narrow as possible; if the thermal diffusivity is needed as well, the strip
width should be optimized according to the minimum of curve f;.

The estimation errors are further discussed in Section 4.1 since they
have to be estimated numerically along with the measurands.

(a*22)1 /2, ka ((l*3 3)1 2

max

12

Fig. 2. Nondimensional coefficients (a%)"? (1: curves f3 and f;) and k/a(a¥)
(a: curves f, and f,) vs the upper end point 7,,,, of nondimensional time interval
[0, Tmax 1. f1 and f5, N =1000; £, and f;, N=50072__ (see text).

max
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2.2. Linearized Model

Due to the nonlinear and implicit mathematical character of Eq. (1),
the complex numerical estimation procedure mentioned above is required
for a THS data analysis. Furthermore, since in practice the classical model
(Eq. (1)) breaks down for both short and long times ¢, the nonlinearly
time-dependent model errors, U () and dUR(t), are introduced. They
can be estimated only roughly. In order to circumvent both of these severe
problems, a quasi-linear approximation function F has been derived which
replaces the shape function f(7) [4].

Linearization of Eq. (1) starts by expressing the functions f; and f, of
Eq.(2) by a first-order Taylor series, while function f; is expanded in a
McLaurin series. As discussed below, for values of 1/t which are small
compared with unity, it is sufficient to retain only the first two terms of
each series f; and f, and the first three terms of f; for linearization and sub-
sequent evaluation of the related model error.

1 2 2 1
: terf| - |r—4=——F7%— 19
S <r> T 7 372 (19)
72 1 1 1
1 — {l—exp<—>]%— + (20)
2 /4n 72 2 /n 4. /n-1?

1 < 1> 1 { 1
: ——Ei| 5 |r——| —y+2Int+— 21
f3 /747Z T2 /*47_[ 4 ‘L'2 ( )

Here y=0.5772... is Euler’s constant. The first term of each f; and f,
series expansion is identical to the limiting value of these two rapidly con-
verging series. After summing, the approximation

(22)

3—y 1 1
flo) =~ +—nt+———
2 /7 Jn 12 /772
is included in Eq. (1). The voltage signal is then given by

2

N ocUé]
24at

~AnlL)

4
U(t)— U, <3—y+lnl+lnDc;+ >=m1n1+n+R2(z) (23)

where m=oaUGI/AnLl, n=m(3 —y+In4a/D?), and R,=mD?/24at. This
expression can be linearized, first, by transforming In 7 — ¢ and, second, by
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neglecting the third term on the right-hand side, R,(z), because it rapidly
vanishes as the nondimensional time 7 increases:

R1) 1
mint+n (3—y+Int?) 672

(24)

As a measure of the first-order deviation of the linear approximation from
its origin, R, is analyzed below. Finally, the quasi-linear working equation,
given in terms of real time ¢, reads

ocU%]

V=t

45
<1nz+1an>=mz'+n (25)

Here m and n are the line segment’s slope and intercept, respectively. From
any THS signal, 4U,(t), both parameters can be determined according to

_2424U—N¥1;4U;

26
(S0P -NTip 20
and
_1 AU t 27
n= N Z i—m Z i ( )
respectively. The measurands follow from
aU3l
p=—"— 28
g 4 Lm (28)
and
D? n
azgexp <m> (29)

Here, AU;=U,— U, and t;=In ¢,, while N indicates the magnitude of the
data set to be analyzed.

Figure 3 shows two functions for different stages of the approximation
of f(z), namely, F, and F,. F; is obtained by summarizing the first series
terms on the right-hand side of f; and f, [Eqgs.(19) and (20)] along
with f3, as given on the left-hand side of Eq. (21) in its original form:

1

2/

Fi(1):= [3—Ei(—77%)] (30)
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Fig. 3. Shape function f(7) and substitutes F, and F,, plotted vs In 7 (see text).

The final result is written as follows:

4 1 4
<3—y+1nt+1na>= <ln 5“’) (31)
D2

1
2/n 2/z\" D?

As can be seen from Fig. 4, which shows the relative error [ F,(7) — f(7)]/
f(7) vs 7, the approximation function, F,, is valid for nondimensional times
7> 2. Therefore, the practical proviso is made that all data pairs U,(7) of
a THS signal for which 7 <2 are discarded from all subsequent analyses.

Due to the linear approximation, another model error, sUY, is intro-
duced that has to be taken into account subsequently. However, as shown
later, despite this additional term, the overall uncertainty of the linear
method is almost the same as that of the nonlinear method because the
linearization introduces only a small additional error. In general, the linear
method uncertainty can even be smaller because the above-mentioned
model errors, JUR(7) and 6U)"(7), do not have to be taken into account:
the error dUR(z), which is connected with the inner boundary, does not
become effective for times 7> 1. The error 6U,"(z), being connected with
the outer boundary, gives rise to nonlinear deviations at large times. These
can now be easily detected as a departure from linearity of the plot U, vs.
In ¢ (cf. Fig. 9).

Fy(t):=
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12}
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|
]

[F;(z) - f(z)] / f(z) x 100

o N oo
/

Fig. 4. Deviation of F| and quasi-linear function F, from the THS shape func-
tion f(7) (see text).

2.2.1. Linearized Model Error

In the course of the mathematical treatment of f(7) that leads via F,
to F,, an error is introduced into Eq.(25), namely, the linearized model
error. In Fig. 4, the individual truncation errors of F,(r) and F,(t) are
plotted as the percentage deviation from their common origin f(7).
Surprisingly, the absolute departure of the logarithmic (In-) function F,
is smaller than that of the exponential integral (Ei-) function F,. This
unexpected behavior is due to the truncation error of the McLaurin series
of f5 that is opposite in sign and, therefore, has a compensating effect
[cf. Eq. (21)]. The absolute ratio of both truncation errors is given by

no-so) s )
Fy(7) = f(7)

The approximation of F, [cf. Eq. (30)] that leads to the final solution F,
[cf. Eq. (31)] obeys the same rules as the linearization to the fundamental
transient hot wire (THW) model, f\ (7). From Ref. 5, for example, it is
known that

dat _

fw(r)=—Ei(—rr’z)z—y+21n‘cr=—y+ln7—:FW (33)
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Here r denotes the radius of the wire (instead of D, the width of the strip).
The ratio of the absolute approximation errors related to both methods,
THS and THW, reads as follows:

=0(1)~21 (34)

or Q(7) ~ 3 if the radius of the wire r is related to the half-width D/2 of the
strip. Thus, the linearization of the THS working equation yields an even
better approximation than that of the closely related THW method. Figure 5
shows the percentage departure of Fy, from fy, vs nondimensional time.

From the data set, (F,(7)— f(7))/f(z), as plotted in Fig.4, the
individual linear model error cannot be derived directly because it depends
not only on 7, (#.,), but also on the other end point, 7, (?,.<), Of a
signal’s linear segment [ 7., Tmax ] (cf. Fig. 11). Since this error is intro-
duced by the truncation of the series of f;, f>, and f5, it can be expressed
to a good approximation by the above-mentioned remainder R,. Expressed
in terms of the time-dependent error in voltage U} (¢), one obtains for
each individual experimental data pair U,(¢):

1

D’m m
oUNt,) = = 35
() 24at; 6exp(n/m—3+y)expt; (33)

2 o/ |
SHIN

E -15 Fu

E_

0 2 4 6 8 10 12 14 16
T

Fig. 5. Deviation of quasi-linear function Fy, from the THW shape function f (1)
compared with the THS shape function F, (see above).
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Fig. 6. Model error in measured thermal conductivity 1 caused by the linearization

of Eq. (1). The error has been plotted in terms of different upper end points 7,,,, of
any linear interval.
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Fig. 7. Model error in measured thermal diffusivity a caused by the linearization of

Eq. (1). The error has been plotted in terms of different upper end points 7, of any
linear interval.
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For the linear segment of a THS signal to be analyzed, the induced devia-
tions from both measured quantities, m and n, are given by

_m SiSen-h)-NIuew(—h)
) = g g a3 +7) TP NE 30
ulm(n):l z Zexp —m)y (37)

N|6exp(n/m—3+y)

A numerical evaluation of Egs.(36) and (37) with respect to the
measurands 4 and « results in the following empirical expressions:

i 2 100 % L1 (2,782, (38)
10 100 5 A1 (275, (39)

Here the constants are L1=127, L2=0.85, A1=28.5, and A2=0.67.
Separately for both measurands, Figs. 6 and 7 show the effect which a
variation of the upper end point 7, between 5 and 150 exerts on the

100 ——

-
o

Model error, %

Fig. 8. Percentage model error in measured thermal conductivity 4 and thermal
diffusivity a caused by the linearization of Eq. (1) for an upper end point t,,,, = 20.
The error has been plotted vs the lower end point of any linear time interval (see
text).
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Fig. 9. Model error in measured thermal conductivity caused by the linearization of Eq. (1).
The error has been plotted vs the end points 7., and 7,,,, of any linear interval.

related model error in terms of the lower end point 7.;,. For a more
convenient comparison, numerical values of d4/4 and da/a vs. t,,, are
plotted in Fig. 8 for a fixed value of 7,,,, =20. Obviously, the model error
connected with thermal diffusivity is larger than that connected with ther-
mal conductivity. This has been pointed out more generally in Ref. 3 for the
first time.

As mentioned above, the lower limit 7,,;, is proposed to equate to, at
least, 2. The upper limit 7., depends on the probing depth R, of the strip’s
thermal influence (i.e., the maximum sample width) and the strip width D,

as discussed in Section 1. There, the empirically obtained Gustafsson
expression [2]

R,
> (40)

Tmax ~ 2

is given along with our linear approximation of the related maximum
excess temperature, 7 ,~ 0.1 K, of the sample’s exposed surface A at the
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Fig. 10. Model error in measured thermal diffusivity caused by the linearization
of Eq. (1). The error has been plotted vs the end points 7,,;, and 7,,,, of any linear
interval.

nondimensional time t,,,,(#.,.)- This value is in excellent agreement with
the experiment, as shown in Fig. 11.

2.2.2. Linear Evaluation Error

As has been shown for the nonlinear model parameters k(1) and «a, the
linearized model parameters m and n can also be estimated only with a
restricted degree of confidence, expressed here in terms of the confidence
intervals u, (m) and u, (n), respectively, given by Eq. (16). These intervals
are again associated with the characteristic confidence level P.

In the case of linear regression (j=2) and, again, a percentage
confidence level of P=68.3%, the probability function now results in
F(0.683,2) =2.3 [ 8], and both diagonal elements of the matrix o* are
. _ >
NTi - @

. N
EINT s )
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Fig. 11. Experimental THS signal (strip voltage) and excess temperature of the sample’s
outer surface, both plotted vs In 7 (see text).

Substituting Eq. (41) and Eq. (42), respectively, into Eq.(16), the con-
fidence intervals for slope m and intercept n, referred to as standard uncer-
tainties of type A, are written as follows:

(237 N
N ANy )
N £ 2 )

TNN2NZ P = (2 1)

3. MEASUREMENT ERRORS

There are four significant measurement errors that have to be taken
into account. Three of them originate in the electrical part of the setup.
First, to simplify the experiment, the strip is not heated by constant power
but by constant current. This mode results in a continuous growth of the
strip’s heat flow @,, which is given by ®,=P=R(T)I* Second, the
current source’s instability, 0/, causes a departure of the THS voltage
signal, namely, U, dI/I. This error is analyzed together with the voltage
measurement error (cf. Section 3.2): due to the limited accuracy and non-
vanishing integration time of the voltmeter, the measurement is affected by
an error 6U). Third, an additional error in the measured voltage arises
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from a temperature drift in the sample that occurs even in well-thermo-
stated setups:

OUI=0UT +5UY +0UT (45)

Here the superscripts denote the following potential sources of error: P,
constant current mode; V, nonideal voltmeter, instability of current source;
and T, temperature drift.

3.1. Constant-Current Mode

The electrical resistance R(7T') of the Joule-heated strip increases con-
tinuously as a measure of its temperature 7. When a constant current /
is fed to the strip, it generates a heat flow that is not constant but varies
at a rate ®y=P=UI=R(T)I* This effect causes an error U’ in the
measured voltage signal.

To determine the influence of the temperature-dependent generation
rate within Eq. (1), the constant power U, is replaced by U(¢)I,. After
some rearrangements the working equation reads as follows:

Uo
U= krvg 7 o

A Taylor series expansion of U(t) about kf(7)/U, can be used to deter-
mine the error since kf(7)/U, << 1:

2

V1) = Uy +Kf(0) + g )+ - @)

The difference between Eq. (1) and Eq.(47) is represented by the third

term on the right-hand side of Eq. (47) because higher-order terms may be
neglected in view of the above-mentioned inequality. Thus,

5U?=’sz2(r) (48)
1 UO

In terms of the nondimensional time 7, three cases can be considered:

k2
1. T<<135U?=UT2 (49)
0
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k2
2. 1=1=6UP=053— (50)
Uo
P k2 2
3. t>>1=0UP=——(121+In71) (51)
nU,

During a normal THS run, all three cases occur, one after the other.

3.2. Voltage Measurement

Errors in the measured voltage, U}, of the monitored signal U(z;) are
caused mostly by three different effects: the finite precision of the volt-
meter, u(U); its nonvanishing integration time J¢ while the signal rises as
k(0f(z;)/0t); and the current source uncertainty, u(/). Both instrument
uncertainties, u(U) and u([I), depend on time. Their systematic components
are covered by Eq. (1). Their random components cause an increase in the
%> deviations of the observed signal from the fitted one. As A-type uncer-
tainties, they have already been accounted for in Section 2.1.2. Thus, the
residual time-dependent voltage error is introduced by the integration time
of the voltmeter and the transient signal rise:

a‘U,.V:&sz (52)
ot
where
5f(fi):5f(f)@ =T’[erf1+ 7; exp<_1>_ 7; } (53)
or ot Atli=y 20,1l 1, Un 2) Jn

During a THS run, the first term on the right-hand side of Eq.(52)
increases slightly, the second term remains constant, and the third term
decreases to 50% of its initial value within the interval (0, t=1).

3.3. Ambient Temperature Variation

Any variation in the temperature of the sample environment, d 7 /d¢,
causes a departure in the measured voltage signal of

dT
5U,.T=o<U0d—;°zi (54)
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4. STANDARD UNCERTAINTY

According to Ref. 1, the combined standard uncertainty u.(y) of the
quantity y is the positive square root of the combined variance uZ(y)
obtained from

N 5F 2
uz(y)= ) < > u*(x;) (55)
i=1

ax;

Here F(x;) denotes the (explicit) model of the measuring procedure of
input quantities x;. The partial derivatives of F with respect to x, are
referred to as sensitivity coefficients.

For the classical THS working equation [ Eq. (1)] as the function F,
the right-hand side of Eq. (55) cannot be treated analytically because of its
implicit character in both measurands. Therefore, a numerical procedure
has been developed to estimate the variances u?(x;) as close as possible to
the recommendations of the ISO guide. This procedure is presented in the
following section. In contrast to Eq. (1), its explicit approximation,
Eq. (25), can be analyzed in full accordance to the guide, as presented in
Section 4.2.

4.1. Standard Uncertainty of the Nonlinear Method

In cases of an implicit model, the ISO guide [ 1] recommends that the
particular values of the derivatives (sensitivity coefficients) of Eq. (55) be
evaluated experimentally. However, in the case of THS measurements, this
procedure is a tedious and time-consuming task that easily results in inac-
curate results. The experimental approach is therefore transformed into a
numerical procedure. Within the framework of the nonlinear data analysis
mentioned above, the specific response of the estimator is calculated for
systematic variations of any single input quantity, while, for each run, all
other quantities remain unaltered. Since the resulting characteristic varian-
ces would not describe deviations due to the numerical procedure itself,
they have to be separated into a type A subcomponent, u%, and a type B
subcomponent, u3, prior to the computation. The type A values stand for
the evaluation errors, while the type B values provide a measure of the
possible errors of model and measurement.

The primary input quantity is given by the pointwise monitored THS
signal (U,, t;), assuming that model, Eq. (1), is valid for the measuring
procedure. For the measurands it then follows that

U?%J D)?
%o and az(T )

2/n Lk 4t

M
N=
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Hence, additional measurable quantities are o, U,, I, L, D, and k. The
combined variance in / is given by

u(2) 2_ u(oc)>2 <u(1)>2 <u(L)>2 < u(Uo)>2 <u(k)>2
< i > —< " + 7 + 13 +(2 U, + B (56)
The first four terms on the right-hand side of Eq.(56) can be readily

evaluated. The last one, u(k), requires separation into subcomponents
which must be calculated individually. The same applies to the variance of

a, Eq. (58).
-
<u<a>>2: <uA<a>>2+ <uB<a>>2 (58)

a a a

The two type A variances are calculated from Egs. (17) and (18), respec-
tively:

2

12 (k) =4.72 | | N"_4 (59)
XZ
ui (a) =472 |a¥)| N_a (60)
The two type B variances are given by
ug (k) = ug, (k) + ug(k) +up (k) + ug (k) + uz (k) (61)
2
ui(a)= (2 % u(D)> +u2(a)+uk(a)+ ud(a) +uz(a)+ur(a) (62)

The subscripts denote the following possible sources of error: W, inner
boundary; R, outer boundary; P, constant-current mode; V, nonideal
voltmeter/current source; and T, temperature drift.

To perform the above-mentioned numerical operation on Egs. (61)
and (62), both expressions are taken as operands. Two operators, G and H,
are introduced that define a mapping between a THS time series (4U,, t;)
and the estimates of the related parameters k(1) and a:

k=G(U,; t;) (63)

"1

a=H(U; t;) (64)
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These numerical operators are given by the above-mentioned Levenberg—
Marquardt estimator.

The estimator’s initial run yields the measurands k and « from the
original THS signal U, to be analyzed. Prior to a second run, the signal is
altered by pointwise adding the individual value of one particular error,
e.g., 0UY. The estimator’s new output then results in

ki=G(U;+5UY, 1,) and a,=H(U;+UY, t;) (65)

i 2"

It follows that

uw(k)=|G(U,;, t;) — G( Ui+5Uz“N9 )|

(66)
uw(a)=[H(U;, t;) — H( Ui+5Ust )l
Subsequent runs provide all required variances.

4.2. Standard Uncertainty of the Linear Method

For the linear method all sensitivity coefficients can readily be
calculated analytically. From Eq.(25), working equations are readily
derived for both measurands [ Egs. (28) and (29)]. The combined variances
for 1 and a are obtained from the time-independent standard uncertainties
of the input quantities and the linearized model errors:

u(A)\? _ <u(oc)>2 <u([)>2 <u(L)>2 <u( UO)>2 <u(m)>2 <6/1>2
</1>_oc )\ ) ) o) TG
(67)
(1) (DI ()P (0 atm) o) )
a D m n m m a
The model errors are taken into account in each case by the last term
on the right-hand sides of both equations. The variances of input quantities

o, I, L, U,, and D can readily be calculated, whereas those of the
parameters m and n consist of two subcomponents of type A and type B

according to [1]
() = () (=) )

(e
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The type A terms are already defined by Eqs. (43) and (44). They vary
directly as the root-mean-square value of y, which itself depends par-
ticularly on the current source noise. Since the current noise is randomly
distributed, both type A terms do not depend on time. The type B terms
account for time-dependent systematic voltage deviations, as governed by
Egs. (5) and (45). From a formal point of view, the relevant superscripts
of both expressions, W, R, P, V, and T, are now replaced by an index J for
the subsequent summation:

ug(m) =3 uz(m) (71)
ug(n) =3 uz(n) (72)

Here J =3, for example, indicates deviations caused by the error P (non-
constant power supply). Using Eqgs. (26) and (27), respectively, the
standard uncertainties of 72 and n can be written as follows:

XY 0U]-NYt;0U]
(X)) NX

uy(m) (73)

1
u,(n)=N<Z 5U§—uj(m)21§> (74)

These equations now complete the set of expressions that are necessary for
the assessment of the standard uncertainty of the linear THS method.

5. RESULTS

First, theoretical values for the standard uncertainty in the thermal
conductivity of a Pyrex reference are calculated for the nonlinear and linear
methods. The results are presented side by side in tables for a more con-
venient comparison. Second, they are validated by experimental data.

5.1. Theoretical Values

Two typical solutions to Eq. (29) for the nonlinear and linear evalua-
tion procedures have been derived. The parameters of a Pyrex CRM 039
(Certified Reference Material) sample are listed in Table I.

The values for “strip width” and “evaluation time interval” assumed
here differ for the nonlinear (NL) and the linear (L) procedure. Both
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Table 1. Experimental Parameters of a Measurement on Pyrex
CRM 039 (See Text)

Thermal conductivity 1.14W.m~1.K!
Thermal diffusivity 0.5mm?.s~!
Working temperature 23°C

Rate of heat flow 04 W

Strip length 100 + 0.5 mm
Strip width (NL)* 54 0.05 mm

Strip width (L)“ 14+0.05 mm

Strip thickness 0.01 mm

Strip heat capacity 450] .kg—!.K!
Strip density 9000 kg - m 3
Strip temperature coefficient 0.006 4 0.00005 K !
Evaluation time interval (NL) [1.2,40] s
Evaluation time interval (L) [2.0,40] s

Max. temperature excursion 19K

Sampling rate 143571

Current 1+0.007 A
Voltmeter uncertainty 4x1073V
Voltmeter integration time 0.017 s

Sample thickness 30 mm
Temperature drift I1x107*K-s7!

¢ NL, nonlinear; L, linear.

modifications are necessary in order to assess the uncertainty for optimum
experiment parameters that are different for both procedures.

First, the type B variances, ufw), of parameters k(4) and « of the non-
linear model and parameters m(4A) and n(4, a) of the linear method are
determined. These variances depend on certain model errors, “J,” as intro-
duced by Egs. (5) and (45). The results, being obtained from Egs. (65) and
(66) and Egs. (73) and (74), respectively, are given in Table II. In order to
identify the different variances for the nonlinear and linear models, subse-
quently they are denoted by superscripts “NL” and “L,” respectively.
Second, the type A variances for measurands 4 and « from input quantities
x; and evaluation errors are calculated for both methods. They are listed in
Table III. Including all the values into the related equations as given in
Sections 4.1. and 4.2, one, first, obtains the relative standard deviation of 1
and «a in percentage for the nonlinear and linear methods:

UNE() /1 =2.6%,  uL())h=2.5%

uNa)ja=11%, ua)la=11%
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Table II. Type B Variances for Parameters & and @ of the Nonlinear (NL) Method and
Parameters m and n of the Linear (L) Method as Introduced by Model Errors (see Text)

Error “7”  (upg, (k)/k)? (up(a)/a)? (uf g (m)/m)? (ugy (n)/n)?
w 6.8%x10~° 55%x1073 7.6x10~° 1.0x 1073
R 26x107* 83x1073 1.6x1073 6.1x107¢
P 14x10~* 63x10* 34x10~* 8.0x10-°
\Y <108 14x10~° 46x107° 56x107¢
T 12x10~* 141073 24x107° 3.7x10°°

Finally, the relative uncertainties for a coverage factor of 2 are

uNH(Q)/A=52%, uW'™(A))/h=5%
rNL( )/Cl— 22%, u’L(a)/a=22%

5.2. Experimental Values

In order to verify the theoretical results obtained for the standard
uncertainty of the thermal conductivity of the nonlinear and linecar THS
methods, measurements on Pyrex 7740 glass were carried out. This material,
manufactured by la Société Corning France, was chosen for several reasons.
Its thermal conductivity of 1.14 W.m~'.K~! at room temperature is
representative of a wide range of dielectrics. This material has been in use
for a long time and has been studied thoroughly, for example, in Refs. 9-12.
Our sample has been cut from the original bulk that was used for the
certification as the BCR standard reference material CRM 039 for thermal

Table III. Type A Variances for Measurands 4 and a from Input Quantities x; and
Evaluation Errors (See Text) for the Nonlinear (NL) and Linear (L) Methods

Input
quantity x;  (u}(4)/2)? N (a)/a) (ul(2)/2)? (uly(a)/a)®
o 7x1073 — 7x 1073 —
Uy 1x10~8 — 1x1078 —
1 5x1073 — 5x1073 —
L 25%107° — 25x107° —
D — 1.0x10~4 — 25x1073
m — — 3.8x10~% 39%x1073
n — — — 3.5%x107%
Evaluation

Error 28x107° 1.6x1073 1.Ix10~* 5x1073
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conductivity [ 12] in which PTB cooperated. Moreover, our IR absorption
spectra on Pyrex show that, within the temperature range of the measurements,
Le., from —75 to 195° C, there will be no significant radiative heat transfer.

The experiments were performed using a nickel strip 100 mm in length,
0.01 mm in thickness, and 3 mm in width. [ A strip width of D =3 mm has
been chosen in order to ensure comparability of experimental data with
both our analytical assessments for D™ =5 mm (nonlinear method) and
D"=1mm (linear method).] The strip is clamped between both brick-
shaped sample halves, each 100 x 30 x 18 mm?®. The thermal part of the
setup is mounted inside an insulated container that is immersed in a
thermostated bath. In a four-wire circuit the strip is connected to a con-
stant-current source and a voltmeter. Beginning at time zero, ¢,, a constant
current of 1 A is passed through the strip for about 2 min while the voltage
drop U,(t) is recorded pointwise at a sampling rate of 14s~!. For each
working temperature Ty, three repeated runs were performed.

Each data set, 4U;(7)| 7, was analyzed twice. First, the linear and, then,
the nonlinear evaluation procedures were carried out. Both are described in
some detail in Refs. 3 and 4, respectively. From the linear procedure, not
only were the values of the measurands obtained, but also the practical
upper end point ¢, of each THS signal. Using this substantial information
as input, the nonlinear evaluation was performed numerically, thus providing
a second pair of values for thermal conductivity and thermal diffusivity.

1. . T .
5 A
] A Jin. procedure i
‘Tx 14 v nonlin. proc. =4
- I e SRMdata N A
€13 el
= P
g 2
2 12 -
3] ]
3 L
g L+
g 1.1
= !
£
= T4

0.9 — : : : : : : :
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Fig. 12. Thermal conductivity of Pyrex CRM 039 vs temperature, evaluated by
two mathematical models and against certified standard reference data.
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Fig. 13. Experimental data sets as shown in Fig. 12 in comparison with the certified
standard data of Pyrex CRM 039 (baseline).

Figure 12 presents the results obtained by us for the thermal conduc-
tivity of Pyrex CRM 039 vs temperature along with the certified reference
data (indicated as SRM data). As can be seen, the three data sets agree
very well. Figure 13 shows the deviation of our two experimental data sets
from the SRM data (baseline). The maximum departure is 0.8 % for each
data set. This value is much smaller than the estimated standard uncertain-
ties of both the nonlinear and the linear methods. Obviously, there is no
systematic difference, either between each of our data sets, on the one
hand, and the reference values, on the other hand, or between our data sets
themselves. Thus, the scatter in the data is due to the measurement
procedure, not to data analysis.

In Ref. 12 an uncertainty of at least 1.2% is claimed for the SRM data.
Hence, the uncertainty values being estimated for both the nonlinear and
the linear THS methods are in good agreement. However, as mentioned
above, for the nonlinear method the most significant source of systematic
error, the undefined upper end point, is not considered here.

6. SUMMARY

The ISO standard uncertainties of the thermal transport poperties,
4 and a, have been calculated for given values of the ber standard reference
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material CRM 039, Pyrex 7740. However, the expressions have been gener-
alized so that the appropriate values can easily be used to examine possible
errors for other dielectrics.

The assessment is made for three major classes of error sources,
namely, the model error, the evaluation error, and the measurement error.
The first class comprises errors due to deviations of the ideal physical
model from the practical setup, the second one covers errors arising from
the scatter of experimental data, and the third one comprises errors of the
peripheral measurement instruments.

The error analysis is presented for the nonlinear (classical) and
linearized THS models. Since the classical model is implicit, the sensitivity
coefficients of the variances in the measurands cannot be calculated ana-
lytically. They must be estimated numerically using a newly developed
procedure. The analysis of errors indicates that, for the nonlinear method,
the precision in localizing the theoretically undefined upper end point of
the time interval that is valid in practice is the major source.

The recently developed linearization transforms the complex classical
model into a linear and explicit model. As a first favorable consequence,
the measurands 4 and a can now be determined from the slope and inter-
cept of the linearized THS signal. The above-mentioned model error is thus
no longer crucial.

As a second consequence, for the first time the explicit character of the
linear method now allows the uncertainty to be assessed in complete agree-
ment with the recommendations of the relevant ISO guide. Since the
linearization of the mathematical model does not lead to any substantial
increase in uncertainty, both pairs of results may be considered as equiv-
alent to a first-order approximation and, thus, mutually comparable. For
the nonlinear and linear THS methods the associated standard uncertain-
ties of 4 differ only slightly (2.6% and 2.5%), while the standard uncer-
tainty of a is 11% for both methods. It should be pointed out that the
model error of the linear THS method is considerably smaller than that of
the closely related THW technique, provided that both methods are
realized in the same interval of dimensionless time.

Finally, the uncertainty in A is assessed experimentally against Pyrex
as the reference standard CRM 039 for temperatures between —75 and
195° C. The deviations are within a range of +0.8% and, hence, confirm
the theoretical results.
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